22 research outputs found

    The matricial relaxation of a linear matrix inequality

    Full text link
    Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensaetze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in the source file, or see http://srag.fmf.uni-lj.si

    On peak phenomena for non-commutative HH^\infty

    Full text link
    A non-commutative extension of Amar and Lederer's peak set result is given. As its simple applications it is shown that any non-commutative HH^\infty-algebra H(M,τ)H^\infty(M,\tau) has unique predual,and moreover some restriction in some of the results of Blecher and Labuschagne are removed, making them hold in full generality.Comment: final version (the presentation of some part is revised and one reference added
    corecore